
Universität Freiburg Georges-Köhler Allee, Geb. 51
Institut für Informatik D-79110 Freiburg
Prof. Dr. G. Lausen lausen@informatik.uni-freiburg.de
Anas Alzoghbi alzoghba@informatik.uni-freiburg.de
Anthony Arrascue arrascue@informatik.uni-freiburg.de

Data Models and Query Languages
Summerterm 2014

6. Exercise Sheet: SPARQL 1.1 & nSPARQL

Discussion: 22.07.2014

Submission Guidlines: Please hand out your written solutions directly to your tutors right before the
exercise session. If you want to submit before the deadline, you can leave your solutions in the mail box
in building 51-01 (first floor). Hand written solutions are also accepted as long as these are readable.

Exercise 1 (SPARQL 1.1: Aggregations, Subqueries, Explicit Negation, 6 Points)
Consider the following RDF graph in a movie domain, where information about ratings given by users
on different movies in addition to movies genres are modelled in terms of RDF triples. The corresponding
N3 file can be found in the attached file (movies.n3).

Bob

male

30

gender

age

Rating_1

Rating_2

4.0
 rating

9.0
 rating

Gravity ratedMovie

Django
Unchained

drama

sci-fi

thriller

action

Alice

female

27

gender

age

Rating_4

Rating_5

5.0
 rating

9.5
 rating Elysium

Man_of_steel

ratedMovie drama

sci-fi

thriller

action

Rating_3

Rating_6

3.0 rating

8.0
 rating

 ratedMovie

 ratedMovie

ratedMovie

ra
te

d
ra

te
d ge

n
re

ge
n

re
ge

n
re

ge
n

re

foaf:knows

Formulate the following requests as SPARQL 1.1 queries. Evaluate them on the given RDF document
and write down the final results.

a) Compute the average rating of each user grouped by the genre of the movies he/she has rated. We
call this average as the genre rating. (2Pts)

b) Find all users that have similar taste as Bob. Similar taste is defined as:
If user a has a genre rating (defined in a) ra for genre g and user b has a genre rating rb for genre g,
then a and b have similar taste if for each genre the following inequality is true: |ra − rb| < 1.
This query should build on the previous query. The subquery provided by SPARQL 1.1 can help you
in formulating the requested query. (4Pts)

c) Give a movie recommendation to Bob. A recommendation can be derived from the list of movies
which where rated highly (>= 8) by other users who have similar taste (defined in b). This type of
recommendation is known as Collaborative filtering. Proceed as following using the operations from
SPARQL1.1:

• Aggregation to calculate the genre rating as in (a)
• Aggregation + subquery to find the similar users with similar taste as in (b)
• Subquery + negation to find movies rated highly by similar tasted users but have not been watched

(rated) by Bob.

Exercise 2 (nSPARQL, 6 Points)
Consider the RDF Graph [1]:

nSPARQL: A Navigational Language for RDF 67

dom

CalaisParis Dover

sp sp sp

sp

TGV Seafrance NExpress

Dijon

train ferry bus

transport

sp

Hastings

London

coastal city

country

France

type

sp

dom

range

city

range sc

Fig. 1. An RDF graph storing information about transportation services between cities

services (in the form of RDFS annotations). For instance, in the graph we have that a
“Seafrance” service is a subproperty of a “ferry” service, which in turn is a subproperty
of a general “transport” service. Assume that we want to test whether a pair of cities
A and B are connected by a sequence of transportation services, but without knowing
in advance what services provide those connections. We can answer such a query by
testing whether there is a path connecting A and B in the graph, such that every edge
in that path is connected with “transport” by following a sequence of subproperty re-
lationships. For instance, for “Paris” and “Calais” the condition holds, since “Paris” is
connected with “Calais” by an edge with label “TGV”, and “TGV” is a subproperty
of “train”, which in turn is a subproperty of “transport”. Notice that the condition also
holds for “Paris” and “Dover”.

Driven by these considerations, we introduced in [7] the language nSPARQL, that in-
corporates navigational capabilities to a fragment of SPARQL. The main goal of [7] was
not to formally study nSPARQL, but instead to provide evidence that the navigational
capabilities of nSPARQL can be used to pose many interesting and natural queries over
RDF data. Our goal in this paper is to formally study some fundamental properties of
nSPARQL. The first of these fundamental questions is whether the navigational capa-
bilities of nSPARQL can be implemented efficiently. In this paper, we show that this is
indeed the case. More precisely, the building blocks of nSPARQL patterns are nested
regular expressions, which specify how to navigate RDF data. Thus, we show in this
paper that nested regular expressions can be evaluated efficiently; if the appropriate data
structure is used to store RDF graphs, the evaluation of a nested regular expression E
over an RDF graph G can be computed in time O(|G| · |E|).

The second fundamental question about nSPARQL is how expressive is the language.
In this paper, we first show that nSPARQL is expressive enough to capture the deductive
rules of RDFS. Evaluating queries which involve the RDFS vocabulary is challenging,
and there is not yet consensus in the Semantic Web community on how to define a query

a) Using the semantics of nested regular expressions defined in slides: (106 and 108), show the evaluation
steps of the following nSPAQL expression and show the final result:
P1 = (?x, (next :: TGV | next :: Sea f rance)+,Dover)

b) The following query finds the pairs of cities such that there is a way of travelling between those cities,
and such that every stop in the trip is a coastal city. Change this query1 to retrieve the pairs of cities
which are connected via train or a ferry or any combination of both. And the destination city is a
coastal city. (2Pts)
P2 = (?x, (trans(transport) / sel f :: [trans(type) / sel f :: costal city])+, ?y)

For the following set of nSPARQL expressions, give the final result after the evaluation on the given RDF
graph, and formulate the nSPARQL expressions as SPARQL property path queries if possible or explain
why they are not expressible.

c) P3 = (?x, (next :: Sea f rance | next :: NExpress)+ / sel f :: [next :: NExpress / sel f :: London]
/ (next :: Sea f rance | next :: NExpress)+, ?y). (2Pts)

1Keep using trans()

2

d) P4 = (?x,next :: [(next :: sp)∗ / sel f :: transport], ?y)
e) P5 = (?x, (next :: [(next :: sp)∗ / sel f :: transport])+, ?y). (2Pts)

References:
1. Jorge Prez, Marcelo Arenas, Claudio Gutierrez: nSPARQL: A Navigational Language for RDF, 7th
International Semantic Web Conference, 2008.

3

